新闻及香港科大故事
2024

新闻
科大工学院研发钙钛矿量子线全彩纤维发光二极管 推动先进可穿戴显示技术的发展
香港科技大学(科大)工学院的研究团队成功研发了一款利用钙钛矿量子线制成的全彩纤维发光二极管,为可穿戴照明和显示设备的创新发展创造了有利条件。
纤维发光二极管(Fi-LED)因与纺织品的制造兼容及具有均匀的空间亮度,是柔性LED显示领域中常用的关键组件。金属卤化物钙钛矿(MPH)因具备卓越的光电性能,已成为新一代LED中极具潜力的发光材料。尽管潜力巨大,利用MPH制造纤维发光二极管仍存在不少挑战,包括由引力和表面张力造成的不均匀涂层、低质量的结晶,以及复杂的电极沉积过程,这些均会导致不均匀及低效率的发光。
为了解决这些难题,科大电子及计算机工程学系和化学及生物工程学系讲座教授范智勇的研究团队采用了一个新颖的方法,在薄铝纤维上使用多孔铝膜模板。多孔铝膜具有约5纳米的超小孔径,MPH前驱体溶液通过卷对卷溶液涂布技术注入多孔铝膜,随后进行退火程序,以达致空间均匀的溶剂蒸发和MPH的结晶。这个方法令钙钛矿量子线阵列能均匀生长,并大大减低了多孔铝膜表层上多余的薄膜结构的形成。
研究团队成功制成了发射峰值分别为625纳米(红色)、512纳米(绿色)和490纳米(天蓝色)的纤维发光二极管。这些二极管展现出良好的弯曲性和延展性,使其适用于纺织照明的应用。研究团队并制作了多款二维和三维的结构,包括二维全彩字符串「I ♥ HKUST」,它们均具有出色的荧光均匀性。此外,他们又利用能产生渐变颜色的卤化物钙钛矿量子线制作了维多利亚港的「夜景」,突显了纤维发光二极管的多功能性和美学潜力。
是项研究为纤维发光二极管的技术带来了重要进展。团队未来将着力提升纤维发光二极管的效率和稳定性,探索新的钙钛矿成分以增加发光颜色的数量,并将这些设备整合到商业纺织产品中。
范教授说:「量子限域效应与三维多孔铝膜结构的钝化相结合,使我们能够实现出色的光致发光和电致发光效率。我们的创新方法为制造非常规的三维结构光源开辟了新的可能性,并为先进可穿戴显示技术的发展提供了有利条件。」

新闻
科大工学院研究团队首创手性弹簧界面概念 增强钙钛矿太阳能电池的耐久性
香港科技大学(科大)工学院的一支研究团队首创一种手性构型的界面微结构,用于钙钛矿太阳能电池。该创新界面概念大幅度提高了电池的可靠性和光电转换效率,有助于加速钙钛矿电池的商业化进程。
钙钛矿太阳能电池是一种以钙钛矿结构化合物作为吸光材料的新型薄膜太阳能电池。这种薄膜太阳能电池生产成本低,制造工艺简单。有别于传统矽太阳能电池,钙钛矿太阳能电池无需昂贵的高温、高真空制造工艺,可采用高通量溶液印刷工艺制成。近年来,钙钛矿太阳能电池的性能正急速提升。尽管如此,要实现钙钛矿电池的最终商业化,依然有一些技术障碍,当中以其在户外环境场景下长期运行的耐久性问题尤为明显。研究人员发现,钙钛矿太阳能电池各功能层之间的界面附着力不够强,是导致器件耐久性技术问题的科学根源之一。
为解决这个问题,科大化学及生物工程学系周圆圆副教授及其研究团队从天然手性材料的机械强度中获得灵感,在钙钛矿太阳能电池中独创性地构建了手性结构界面,极大地提高了器件耐久性。
研究团队在钙钛矿吸光层和电子传输层之间嵌插了一层基于R-/S-甲基苄基铵的手性结构中间层,构建了一个坚固且具有弹性的异质界面。经封装的太阳能电池在国际电工委员会(IEC)61215太阳能电池标准下,经过200次在-40°C和85°C之间的循环,合共1,200小时的测试后,仍保留了92%的初始转换效率。
香港研究资助局博士后、现任科大化学及生物工程学系研究助理教授段甜伟博士说:「手性材料具有有趣的机械特性,这与它的子单元螺旋排列有关,就如同机械弹簧。」她补充道:「在关键器件界面引入手性结构中间层,可以使钙钛矿太阳能电池在各种器件运行状态下更具机械耐久性和动态适应性。」
周教授说道:「现在我们已经看到了钙钛矿太阳能电池商业化的曙光。这些电池已经展现出非常高的光电转换效率,一旦我们最终能克服它们在现实场景服役的耐久性问题,它们将具有极高的能源市场价值。」

新闻
科大开发新型人工复眼技术 低成本兼高灵敏度
香港科技大学(科大)工学院的研究团队最近成功研发了一个新型人工复眼,不仅于小范围区域的灵敏度较市场产品高出两倍以上,成本亦更低。新技术有望革新机械人视觉系统发展,并可提升机械人的导航、感知及决策等能力,为人机协作开拓更大的商业应用与发展潜力。
这个创新系统模仿生物复眼的视觉功能,应用范围极广,例如可以配合无人机,协助提升其于灌溉,或灾难事故现场侦测搜救等工作的效率和精准度。而高灵敏的人工复眼亦能更广泛及准确地侦测并连结毗邻的机械人,促进机械人或无人机群的合作。长远而言,人工复眼技术将能有效提升及改善无人驾驶的安全性,亦可加快智能化交通系统的应用,推动智慧城市发展。
新型复眼的研发由科大电子及计算机工程学系和化学及生物工程学系讲座教授范智勇及其研究团队领导,标志着仿生视觉系统领域上的重大进展。一直以来,机械人专家参照昆虫复眼这种具有广阔视野和动态捕捉功能的特性,利用可变形的电子设备,为机械人制造人工复眼。然而,基于变形过程的复杂性和不稳定性、几何形状的限制,以及光学元件与探测器单元之间潜在的不匹配状况等技术问题,透过这种方法制造的复眼系统,较难整合到如机械人或无人机等自主平台。

新闻
科大工学院研发突破 令太阳能电池更高效、更耐用
太阳能或光伏技术是指将光能转化为电能的清洁可再生能源技术,在全球应用日趋普遍。香港科技大学(科大)工学院的研究人员开发了一种分子钝化处理方法,显著提高了钙钛矿太阳能电池的效能和耐用性,有助于推进这种清洁能源的大规模生产。
是次突破的窍门,在于团队成功识别出钙钛矿性能和寿命的关键材料参数。钙钛矿被誉为新一代光伏材料,由于它具有独特的晶体结构,令它在光伏再生能源有着莫大的潜力。此项研究成果已于《科学》期刊上发表。
在科大电子及计算机工程学系、先进显示与光电子技术国家重点实验室的林彦宏助理教授带领下,团队探索了多种钝化方法。钝化是一种化学处理过程,可以减少材料中的缺陷,或减少缺陷带来的影响,让制造光伏器件时,电池性能得以提升,以及延长电池的工作寿命。而这个研究项目的一个重点,就是怎样使用「氨基硅烷」系列分子来钝化钙钛矿太阳能电池。
林教授介绍说:「怎样可以提升钙钛矿太阳能电池的效能呢?在最近十年的技术发展中,『钝化』工艺担当了重要角色。然而『钝化』有多种不同方式,其中能达致最高效能的那些方法,往往在器件长期工作的稳定性方面并不能带来显著改善。」
针对着钙钛矿多晶薄膜表面存在着大量的缺陷态,团队首次展示了不同类型的氨类分子(即一级氨、二级氨或三级氨),以及如何使用这些氨类分子改善这些表面。他们分别使用「外部」(工作环境外)和「内部」(工作环境内)方法观察分子与钙钛矿之间的相互作用,然后辨识出可以大幅提高光致发光量子效率的分子。换句话说,他们找到了哪些分子可以使得材料受激发时发射更多光子,令表面缺陷减少、品质提高。
林教授进一步解释:「我们今次研发出这种方法,对于钙钛矿堆叠型太阳能电池的发展意义重大。钙钛矿堆叠型太阳能电池结合了具有不同带隙的多层光活性材料,由于这种设计能在每一层吸收太阳光的不同部分,充分运用太阳光谱,所以它得以提高整体效能。」

新闻
科大团队提出策略性排放标准 推动制氨工业实现减碳
由香港科技大学(科大)领衔的国际跨学科研究团队提出制定策略性绿氢碳排放标准,能推动制氨工业经济有效地近100%减碳,同时避免土地资源紧张和电网拥塞等问题。 这项开创性研究首次确定了最优成本的制氨工业产氢设施和排放标准。氨生产主要依赖化石燃料制氢,每年在欧洲产生3,600万公吨的二氧化碳排放。 通过水电解产生绿氢,可以大幅减少碳排放,因为它只需要电力,而电力可借由可再生能源产生。然而向低碳氢能转型造成经济和运输的巨大挑战,以电网产生绿氢尤甚。 地区因素带来复杂影响,当中包括可再生资源的供应及当地电力生产的碳强度,以致排放标准和生产成本之间的关联机制尚不明确。为填补此鸿沟,由环境及可持续发展学部助理教授卢中铭教授、公共政策学部助理教授Magdalena KLEMUN教授及其博士生Stefano MINGOLLA博士领导的研究小组与苏黎世联邦理工学院合作展开研究,利用欧洲38个地区于2024-2050年的高分辨率再生能源数据,探讨欧洲一系列排放标准对生产成本的影响,以及向再生能源电解制氢转型的可行性。 尽管数据来源和结果针对欧盟,但其他地区的难减排产业转型使用低碳燃料时,该研究的方法和思路也具有参考意义。

新闻
科大工学院研究团队发现钙钛矿太阳能电池的隐藏结构奥秘 开辟稳定高效器件制备新途径
香港科技大学(科大)工学院的研究团队首次发现,钙钛矿薄膜的晶粒底部广泛存在表面内凹的结构,并揭示了这种结构对于钙钛矿薄膜性能和可靠性的重要影响。基于这项新发现,团队开创了一种有效消除这些晶粒表面内凹结构的新方法,使钙钛矿太阳能电池更加高效和稳定。
钙钛矿太阳能电池是一种极巨潜力的光伏技术,被广泛认为有望在电网供电、便携电源和太空光伏电池等广阔的应用场景中取代现有的矽基太阳能电池。钙钛矿太阳能电池具有其独特优势,它目前不仅具有比商用矽电池更高的功率转换效率,还在原料和制造成本低廉、可持续制造,并可特制不同透明度和颜色的电池等方面具有优点。然而,钙钛矿器件在光、湿、热致应力下的长期稳定性仍然是其商业化的主要障碍。
为解决这一问题,科大化学及生物工程学系副教授周圆圆带领的研究团队,从材料微结构这一独特方向开展基础研究工作。研究团队发现,在钙钛矿薄膜的晶粒广泛存在表面内凹几何形貌。这种高度隐蔽的内凹结构破坏了钙钛矿薄膜界面的结构完整性,是限制钙钛矿电池功率转换效率和稳定性的隐藏因素。
研究团队采用创新方法,透过利用表面活性剂分子「十三氟己烷-1-磺酸钾」(tridecafluorohexane-1-sulfonic acid potassium)来操控钙钛矿薄膜形成过程中的应变演化和离子扩散过程,成功消除晶粒表面内凹结构。团队以此制作的钙钛矿太阳能电池在热循环、湿热和最大功率点跟踪的标准测试中表现出显著提升的耐久性。
这项研究的通讯作者周教授说:「单个晶粒的结构和几何特征将决定了钙钛矿太阳能电池和其他半导体器件的性能。透过揭示晶粒表面内凹结构、研究它们对性能的影响,并利用化学工程定制其几何形状,我们正在开拓一种全新的钙钛矿太阳能电池制造方法,使其效率和稳定性接近理论极限。」
他进一步补充道:「当我们用原子力显微镜仔细检查钙钛矿薄膜晶粒表面的结构细节时,我们对晶粒表面存在的内凹结构非常感兴趣。这些内凹结构通常隐藏在薄膜底部,因此过去的研究人员往往很容易忽略了它们的存在。」

新闻
科大工学院团队为高性能全固态锂金属电池研制先进固态电解质 有助增强储能应用
香港科技大学(科大)工学院的研究团队,最近成功研发一种新一代用于锂金属电池的固态电解质,能够大幅提升电池的安全性和性能。这项突破性发现,有助于推动应用于电动车、便携式电子产品和电网供电等领域的储能技术发展。
与传统锂金属电池相比,全固态锂金属电池以固态电解质取代了易燃的液态电解质,并抑制锂枝晶生长的有害现象,有效提高电池的安全性和能量密度。这种电池为开发新一代储能技术带来前景。然而,全固态锂金属电池的广泛应用受到室温下的低离子电导率和锂离子传递数的限制。
为解决这项挑战,由科大化学及生物工程学系助理教授KIM Yoonseob领导的研究团队,开发了一种新颖的制备方法,结合一种称为离子型共价有机框架(iCOF)的多孔结晶聚合物与聚离子液体(PIL),制造出无溶剂和无塑化剂添加的高性能固态电解质。
这种新型iCOF/PIL合成固态电解质,在室温下具有高离子电导率(达1.50 x 10−3 S cm−1)和高锂离子传输性能(大于0.8)。通过结合实验数据和分子动力学模拟结果分析,团队发现PIL、双(三氟甲烷)磺酰亚胺锂盐(LiTFSI)和iCOF之间建立的共配位和竞争配位机制能够加快锂离子传输,并同时限制TFSI离子的移动。
团队利用这种高性能固态电解质,进一步制造了一款由合成固态电解质与磷酸铁锂合成正极 (LiFePO4 composite cathode)组成的完整锂金属电池。团队发现该电池在1C充放电率和室温下带有141.5 mAh g−1的初始放电容量,经800次循环充电和放电后,仍然保持显著的87%容量。
Kim教授表示:「我们提出的突破性方法首次成功展示出运行稳定、具高可逆容量的全固态锂金属电池,充分展现了iCOFs于电化学储能装置的巨大潜力,为全固态锂金属电池于电动车、便携式电子产品和电网供电等的广泛应用提供了新路向。」

新闻
科大于2024-25年度「卓越学科领域计划」及「主题研究计划」成绩超卓 获批拨款为本地院校之冠
由香港科技大学(科大)领导的三个研究项目,今日获研究资助局(研资局)2024/25年度「卓越学科领域计划」和「主题研究计划」合共拨款港币2.125亿元资助,金额冠绝本地院校,亦是科大历来最好的成绩。
获批拨款的三个研究项目涵盖不同范畴,当中包括开发以人为本的前沿AI及机器人技术,改善长者照顾及护理;创建「香港海岸分身」数码系统,管理极端天气对海岸的影响;以及通过技术转型,提升香港在可持续供应链金融中的地位。
科大校长叶玉如教授向研究团队表达祝贺,她说:「科大今年于卓越学科领域计划和主题研究计划再创历史佳绩,不但充分体现大学对推动卓越研究的坚定决心,亦印证了科大学者的研究实力昭著。而当中两个获资助项目,由科大与科大(广州)的研究人员携手领导,更展现了两校之间的协同发展。透过日益紧密的研究协作,两校将继续引领更多突破性的跨学科研究及科技创新,裨益香港及其他地区。」
科大副校长(研究与发展)郑光廷教授亦为团队的成就感到振奋:「是次科大获研资局两大重点拨款计划的认可,意义非凡。获奖的三个项目分别利用人工智能、机器人和数据科学等尖端科技驱动,彰显了科大致力结合科技创新与研究,探索新兴领域的研究突破。我们预期,随着更多世界级的科研设施相继于校园落成,将有助科大的科研人员进一步探寻知识,应对日益复杂的全球挑战。」
三个获拨款项目包括: